BEEEEEEEP WRONG. guns dont have a stun setting, and you cant destroy tanks with a glock or a colt. a hand phaser can turn an entire M1 abrams tank to dust with just one shot set on "vaporize". oh and guns cant be modified to project forcefields. or heat up rocks to make a fire or well, i could go on all day 
so can phasers. plus they require less power and have a more destructive output as well
phasers are excellent at any range.
I can explain all this but it'd just prove you're all wrong 
Guns have no stun setting, correct. But a railgun/RPG can do alot of damage.
LASERS are good at shorter ranges, I was talking spaceship wise. And phasers are modified laser, the beam is just phased making it alot better of course. At any range I agree with you on that.
Phasers require less power? Well I wouldn't know send me where you got that from in a PM or here in a comment.
And the comment on that last part. You just did prove me wrong. Additional research I did suggests phasers and guns are evenly matched. I'll look into it.
Also becouse phasers are phased lasers, I wouldn't know the exact changes if I find anything to indicate you're right i'll apologise and admit i'm wrong.
Something bout lasers...
Note that laser cannon are notoriously inefficient. Free-electron lasers have a theoretical maximum efficiency of 65%, while others are lucky to get a third of that. This means if your beam power is 5,000 megawatts (five gigawatts), and your cannon has an efficiency of 20%, the cannon is producing 25,000 megawatts, of which 5,000 is laser beam and 20,000 is waste heat! Ken Burnside describes weapon lasers as blast furnaces that produce coherent light as a byproduct. Rick Robinson describes them as an observatory telescope with a jet engine at the eyepiece. Laser cannons are going to need seriously huge heat radiators. And don't forget that heat radiators really cannot be armored.
The messy alternative is to use open-cycle cooling, where the lasing gas is vented to dispose of the waste heat. Not only does this endanger anything in the path of the exhaust, it limits the number of laser shots to the amount of gas carried.
But Troy Winchester Campbell brings to my attention a recent news item. In 2004, a company named Alfalight, Inc. demonstrated a 970 nm diode laser with a total power conversion efficiency of 65%. They are working in the DARPA Super High Efficiency Diode Sources program. The goal is 80% electrical-to-optical efficiency in the generation of light from stacks of semiconductor diode laser bars, and a power level of 500W/cm2 per diode bar operating continuously.
W = (1.0 / Ce)
where:
We = Waste power percentage
Ce = Efficiency of Laser Cannon
Obviously:
CP = BP * We
where:
CP = Laser Cannon total power (megawatts)
BP = Beam Power at laser aperture (megawatts)
We = Waste power percentage
WP = CP - BP
where:
WP = Waste Power (megawatts)
CP = Laser Cannon total power (megawatts)
BP = Beam Power at laser aperture (megawatts)
Getting rid of the waste heat from a laser is a problem if you don't dare extend your heat radiators because you are afraid they will be shot off. A strictly limited solution is storing the waste in a heat sink, like a huge block of ice. "Limited" because the ice can only absorb so much until it melts and starts to boil. If your radiator is retracted and your heat sink is full, firing your laser will do more damage to you than to the target.
-From:
http://www.projectrho.com/public_html/rocket/spacegunconvent.phpNow that only applies if it's considered to be a laser-like weapon. But that's kind of unclear if it's a particle beam tough...
Particle beams have a advantage over lasers in that the particles have more impact damage on the target than the massless photons of a laser beam (well photons have no rest mass at least. The light pressure exerted by a laser beam pales into insignificance compared to the impact of a particle beam). There is better entry as well, with the entry climbing rapidly as the energy per particle increases. Particle beams deposit their energy up to several centimeters into the target, compared to the surface deposit done by lasers.
They have a disadvantage of possessing a much shorter range. The beam tends to expand the further it travels, reducing the damage density ("electrostatic bloom"). This is because all the particles in the beam have the same charge, and like charges repel, remember? Self-repulsion severely limits the density of the beam, and thus its power.
They also can be deflected by charged fields, unlike lasers. Whether the fields are natural ones around planets or artificial defense fields around spacecraft, the same fields used to accelerate the particles in the weapon can be used to fend them off.
Particle beams can be generated by linear accelerators or circular accelerators (AKA "cyclotrons"). Circular accelerators are more compact, but require massive magnets to bend the beam into a circle. This is a liability on a spacecraft where every gram counts. Linear accelerators do not require such magnets, but they can be inconveniently long.
Another challenge of producing a viable particle beam weapon is that the accelerator requires both high current and high energy. We are talking current on the order of thousand of amperes and energy on the order of gigawatts. About 1e11 to 1e12 watts over a period of 100 nanoseconds. The short time scale probably means quick power from a slowly charged capacitor bank, similar to the arrangement in a typical camera strobe. You want a very thin beam with a very high particle density, the thinner the better and the more particles the better. The faster the particles move the more particles will be in the beam over a given time, i.e., the higher the "beam particle current" and the faster this current flows, the more energy the beam will contain.
The power density is such that the accelerator would probably burn out if operated in continuous mode. It will probably be used in nanosecond pulses.
Protons are 1836 times more massive than electrons, so proton beams expand only 1/1836 times as fast as electron beams and are 1836 times harder to deflect with charged fields. Of course they also require 1836 times as much power to accelerate the protons to the same velocity as the electrons.
Neutral Particle Beam weapon. Proposal for the Strategic Defence Initiative.
It is possible to neutralize the beam by adding electrons to accelerated nuclei, or subtracting electrons from negative ions. While this will eliminate electrostatic bloom, the neutralization process will also defocus the beam (to a lesser extent). As a rough guess, maximum particle beam range will be about the same as a very short-ranged laser cannon.
For a neutral particle beam, the divergence angle is influenced by: traverse motion induced by accelerator, focusing magnets operating differently on particles of different energies, and glancing collision occurring during the neutralization process. The first two can be controlled, the last cannot (due to Heisenberg's Uncertainty Principle). The divergence angle will be from one to four microradians, compared to 0.2 for conventional lasers and 20 for bomb-pumped lasers.
The source of the particles for the beam come from sophisticated gadgets with weird names like "autoresonantors", "inertial homopolar generators", and "Dundnikov surface plasma negative ion sources".
-From:
http://www.projectrho.com/public_html/rocket/spacegunconvent.phpNow this site is all based on science and facts/theories (Did you know theories and facts are allmost the same for science?)
Now to talk about guns and their flaws...
Kinetic Kill weapons are unguided missiles that have no warheads. Bullets and artillery shells in other words. They can be a simple as a bucket of rocks dumped in the ship's wake. Since they are basically solid lumps of matter they are much cheaper than a missile. They cannot be jammed, but by the same token they do not home in on the target. The damage they do depends upon the relative velocity between the kinetic lump and the target ship.
-From:
http://www.projectrho.com/public_html/rocket/spacegunconvent.phpNow to talk about railguns...
A railgun is two highly charged rails. When a conducting projectile is introduced into the breech, it strikes an arc between the rails, and is accelerated down the barrel by Lorentz force. The projectile can be composed of anything, as long as the base will conduct electricity. Sometimes a non-conducting projectile is accelerated using a conducting base plate called a sabot or armature. The maximum velocity of the projectile is about six kilometers per second, which is pretty freaking fast. This would give the projectile about 3.8 Ricks worth of damage, e.g., a ten kilogram projectile would have as much striking power as thirty-eight kilograms of TNT.
And when we say "strike an arc", we don't mean "make a tiny spark like scuffing your shoes on the carpet and touching the doorknob." It is more like "incredibly powerful continuous electrical explosion." Those rails are carrying pleny of juice, and quite a bit of it is wasted.
Advantages are simple construction, disadvantage is the severe rail erosion each projectile causes, requiring frequent replacement of rails (some prototypes required replacement after each use). The rails need massive braces, since they are under tremendous force trying to repel the rails from each other.
-From:
http://www.projectrho.com/public_html/rocket/spacegunconvent.phpHere's something bout missiles...
Missiles are small drone spacecraft that chase enemy ships and attack them with their warheads. It can have its own propulsion unit, or be launched by a coilgun and just use small guidance jets. It can carry a single warhead, or be a "bus" carrying multiple warheads. Or multiple mini-missiles.
One of the big advantages of missiles over directed energy weapons is that missiles do not generate huge amounts of waste heat on the firing ship. A missile can be pushed off with springs or cold gas. Once clear of the ship, the missile's propulsion system ignites. But then all the waste heat is the missile's problem, not the ships.
By the same token, the disadvantage is that missiles are expendables, unlike laser bolts (as Anthony Jackson puts it: "If you're willing to have expendables, you can also have expendable coolant."). When the missile magazine runs dry, the launcher will just make clicking noises. But a laser cannon can fire as long as it has electricity.
The second advantage of missiles over directed energy weapons is that (depending upon the warhead) most missiles are not subject to the inverse square law. Laser bolts grow weaker with distance but a nuclear warhead has the same strength no matter how far the missile travels. However, laser bolts cannot be neutralized by point defense.
The warhead is generally a nuclear weapon but others are possible. One possibility is a single-shot coilgun firing a kinetic weapon. Another type of warhead is an explosive charge coated with shrapnel, designed to deliver a cloud of kinetic kill masses into the path of the target spacecraft. A third type is the "submunition".
Of course the simplest is no warhead at all, making the structure of the missile an impromptu kinetic kill weapon. According to the first law of space combat, above about a three km/s relative velocity difference a chemical explosive warhead is superfluous. Rick Robinson says that at these speeds the only reason for conventional explosives is for the bursting charge on a shrapnel cloud.
-From:
http://www.projectrho.com/public_html/rocket/spacegunconvent.phpIt's late now for me i'll go get some sleep read over that web page, and if your intrested the whole site it's where I get alot of information.